The aim of this worksheet is to analyze Einstein’s pre-quantum theory of absorption and emission of light by atoms and study its application to an elementary model of the laser. The articles discuss double-slit experiments with single electrons and molecules.

Exercise 1: Einstein’s theory of atom-radiation interaction

In 1917, Einstein formulated a phenomenological theory for spontaneous and stimulated emission and absorption.

Assume a closed cavity with \(N \) identical atoms with two relevant energy levels, \(E_a \) and \(E_b \), quasi-resonant with the thermal radiation produced by the cavity walls at temperature \(T \): \(\hbar \omega = E_a - E_b \), where \(\omega \) is the frequency of the photon. The average energy density of the thermal radiation is \(u_T(\omega) \).

Let \(A \) be the probability per unit time to spontaneously decay from level \(a \) to \(b \), emitting a photon of energy \(\hbar \omega \). On the other hand, if the atom is in state \(b \), there will be a probability per unit time for absorption proportional to the energy present in the cavity; that is the absorption rate is \(B u_T(\omega) \).

1) Denoting by \(N_a \) and \(N_b \) the populations of the two levels \((N_a + N_b = N) \), write the rate equations for \(\dot{N}_a \) and \(\dot{N}_b \), where \(\dot{\cdot} \) is the time derivative.

2) Consider thermal equilibrium and assume that levels \(a \) and \(b \) are Boltzmann distributed. Determine \(u_T(\omega) \).

3) Compare \(u_T(\omega) \) with Planck’s black body energy distribution and show that the latter is not recovered.

4) Einstein introduced a third process, called stimulated emission, with a rate given by \(B u_T(\omega) \). Write down the modified rate equation and show that now Planck’s distribution is recovered. Determine \(A \) and \(B \).

5) Solve the rate the rate equation from 4) with \(N_a(0) = 0 \). What is the lifetime of the upper level in the absence of thermal radiation?

6) We next assume that there is an additional external source of energy, e.g. a light beam crossing the cavity (like in a laser). The average density can then be written as \(u(\omega) = u_T(\omega) + u_E(\omega) \), where \(E \) denotes the external energy source. Discuss the steady state properties of the solution of the rate equation. What is the maximum possible occupation of the upper level?
Exercise 2: Elementary theory of the laser

Let us consider two-level atoms resonant with the radiation field (and neglect for the time being spontaneous emission) as in Exercise 1. We write the rate equation in the form

\[\dot{N}_b = -\dot{N}_a = -WnN_b + WnN_a \]

where \(n \) is the number of photons in the cavity and \(W \) the transition rate from one level to the other. We define the population difference \(D = N_a - N_b \) that obeys

\[\dot{D} = -2WnD - \frac{1}{T_1}(D - D_0) \]

The phenomenological second term on the right hand side accounts for spontaneous decay and pump action. \(T_1 \) is the characteristic lifetime associated with the decay of the population, while \(D_0 = D(0) \) is the equilibrium population in the absence of photons. On the other hand, there is also a rate equation for the photons:

\[\dot{n} = WnD - \frac{n}{T_c} \]

where the last term describes the photons coming out of the cavity (\(T_c \): lifetime of photons in the cavity).

1) **Threshold and population inversion.** Assuming initially a low photon number (say 1), amplification of the number of photons will only occur if \(\dot{n} > 0 \). Discuss the physical meaning of this condition: When is it satisfied? What are the implications for the level populations? How can the threshold be lowered?

2) **Steady state.** Determine and discuss the steady state solutions \(n_\infty \) and \(D_\infty \) corresponding to \(\dot{D} = \dot{n} = 0 \).

3) **Linear stability analysis.** Let us write the solutions of the laser rate equations in the form

\[n(t) = n_\infty + \epsilon_n(t) \quad \text{and} \quad D(t) = D_\infty + \epsilon_D(t) \]

where \(n_\infty \) and \(D_\infty \) are the steady state solutions and \(\epsilon_n \) and \(\epsilon_D \) are small deviations from the steady state.

By linearizing the laser equations up to order \(\epsilon \), derive equations for \(\dot{\epsilon}_n \) and \(\dot{\epsilon}_D \). Using the ansatz

\[\begin{pmatrix} \epsilon_n \\ \epsilon_D \end{pmatrix} = e^{\lambda t} \begin{pmatrix} \epsilon_n(0) \\ \epsilon_D(0) \end{pmatrix} \]

discuss the stability (\(\lambda < 0 \)) of the solutions for the steady state solutions found in 2). Plot a stability diagram for \(n_\infty \) as a function of \(D_0 \).

Exercise 3: Paper-Work

Find the following articles online and answer the following questions for each of them:

- What is the paper about?
- Why is it interesting?
• What is done?

• How is it done?

Demonstration of single electron buildup of an interference pattern
A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa,

Wave–particle duality of C\textsubscript{60} molecules
Markus Arndt, Olaf Nairz, Julian Vos-Andreae, Claudia Keller, Gerbrand van der Zouw and Anton Zeilinger
Nature 401, 680 (1999)

Observation of the Kapitza–Dirac effect
Daniel L. Freimund, Kayvan Aflatooni and Herman Batelaan
Nature 413, 142 (2001)