Übungen zur Vorlesung "Astronomie und Astrophysik 2", SS 2023

5. Übungsblatt vom 13.06.2023

Abgabe der schriftlichen Übung am 20.06.2023 nach der Vorlesung oder spätestens bis 17:00 elektronisch an guenter.wunner@itp1.uni-stuttgart.de

Aufgabe 8: Kritische kosmologische Konstante (se

(schriftlich, 10 Punkte)

Die Friedmann-Gleichung (mit kosmologischer Konstanten $\Lambda \neq 0$) lautet für das materiedominierte Universum

$$\dot{a}^2 = \frac{8\pi}{3} G\sigma_0 a^3(t_0) \cdot \frac{1}{a(t)} - qc^2 + \frac{\Lambda}{3} c^2 a^2(t)$$

mit der heutigen Massendichte σ_0 .

Zeigen Sie, dass für positive Krümmung ein Urknall vermieden werden kann, wenn $0 < \Lambda < \Lambda_c = c^4/(4\pi G\sigma_0 a^3(t_0))^2$ ist.

Skizzieren Sie für diesen Fall den Verlauf der Funktion $\dot{a}(a)$ und markieren Sie in Ihrer Skizze den minimalen Radius, den das Universum annehmen kann.

Aufgabe 9: Hawking-Penrose-Theorem (freiwillig schriftlich, 10 Punkte)

- a) Leiten Sie aus der Friedmann-Gleichung die Bewegungsgleichung $\ddot{a} = F(a,t)$ her.
- b) Zeigen Sie: Gilt für alle Zeiten $\sigma + \frac{3p}{c^2} \frac{\Lambda c^2}{4\pi G} > 0$, dann gab es vor endlicher Zeit einen Urknall.

Aufgabe 10: Änderung der Gravitationskonstanten(freiwillig schriftl., 5 Punkte)

Zeigen Sie, dass sich bei langsamer Änderung der Gravitationskonstanten G die Entfernung eines Planeten, der die Sonne auf einer kreisförmigen Bahn umläuft, wie 1/G verändert.

Hinweis: Welche dynamische Größe ist auch in einem zeitveränderlichen Zentralfeld erhalten?