

Arbeitsblatt 01 22.10.2019

Matrizenrechnung

Die Mathematik der klassischen (analytischen) Mechanik ist hauptsächlich die Analysis (Differentialrechnung). Dagegen ist die Mathematik der Quantenmechanik überwiegend die lineare Algebra (Vektor- und Matrizenrechnung). Ziel dieses Arbeitsblattes ist es, ein paar Grundkenntnisse der Matrizenrechnung aufzufrischen.

Aufgabe 1: Matrizenoperationen

(a) Seien
$$A = \begin{pmatrix} -5 & 3 & 2 \\ 2 & 0 & -5 \\ 0 & 3 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -2 & 0 & 1 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix}$ und $C = \begin{pmatrix} -1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 1 & 2 \end{pmatrix}$ gegeben.

Berechnen Sie $D = (A + C)^T B$ und die Spur von D: Sp(D).

- (b) Berechnen Sie $\det(E)$, für $E = \begin{pmatrix} -6 & -3 \\ 2 & 4 \end{pmatrix}$.
- (c) Gegebens seien die folgenden Matrizen

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

Bestimmen Sie deren Spur, Determinante, sowie $(\sigma_z\sigma_x-\sigma_x\sigma_z)$, $(\sigma_z\sigma_y-\sigma_y\sigma_z)$ und $(\sigma_y\sigma_x-\sigma_x\sigma_y)$. Geben Sie eine allgemeinen Ausdruck für Terme der Form

$$(\sigma_i \sigma_j - \sigma_j \sigma_i), \quad i, j = \{x, y, z\}$$

an.

Aufgabe 2: Inverse, Eigenwerte und Eigenvektoren

- (a) Berechnen Sie die Inverse E^{-1} zu $E=\begin{pmatrix} -6 & -3 \\ 2 & 4 \end{pmatrix}$.
- (b) Bestimmen Sie die allgemeine Form der Inversen M^{-1} einer 2×2 Matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.
- (c) Nutzen Sie das Ergebnis aus Teilaufgabe (b) um zu begründen, dass die Determinante einer nicht invertierbaren 2×2 Matrix verschwindet. Geben Sie ein anschauliches Argument wieso dies auch für beliebige $n \times n$ Matrizen gilt.

(d) Berechnen Sie die Eigenwerte und zugehörigen Eigenvektoren der folgenden, aus Aufgabe 1 bekannten, Matrizen.

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

(e) Bestimmen Sie ebenfalls die Eigenwerte und Vektoren der folgenden Blockdiagonalmatrix.

$$B = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Aufgabe 3: Matrixdiagonalisierung

Gegeben sei eine $n \times n$ Matrix A mit reellen Eigenwerten λ_i und eine Basis aus Eigenvektoren $\vec{\lambda}_i$ die den gesamten Raum aufspannen. Eine derartige Matrix A kann diagonalisiert werden durch eine Matrix U und dessen Inverse

$$U^{-1}AU = \operatorname{diag}(\lambda_i) \tag{1}$$

mit diag(λ_i) eine Diagonalmatrix mit den Eigenwerten als Einträge.

- (a) Konstruieren Sie die Matrix U mit Hilfe der Eigenbasis von A.
- (b) Zeigen Sie, dass für eine reelle Orthonormalbasis $U^{-1}=U^T$ gilt, die Inverse der Matrix U ist dessen transponierte Matrix.
- (c) Diagonalisieren Sie die nachfolgenden Matrizen. Bestimmen Sie die jeweils zugehörige Matrix U.

$$A_1 = \begin{pmatrix} 3 & 2-i \\ 2+i & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 & 3 \\ 0 & -7 & 3 \\ 0 & -6 & 2 \end{pmatrix}$$