

University of Stuttgart Institute for Theoretical Physics I

Hydrogenlike model for excitons in quantum wells

In the hydrogenlike model for excitons in quantum wells the band structure is neglected. Due to the cylindrical symmetry in the Hamiltonian, the degrees of freedom can be reduced to the coordinates (ρ , $z_{\rm e}$, $z_{\rm h}$) and reads

$$H = -\frac{\hbar^2}{2m_{\rm e}}\frac{\partial^2}{\partial z_{\rm e}^2} - \frac{\hbar^2}{2m_{\rm h}}\frac{\partial^2}{\partial z_{\rm h}^2} - \frac{\hbar^2}{2\mu}\left(\frac{\partial^2}{\partial \rho^2} - \frac{m^2 - \frac{1}{4}}{\rho^2}\right) - \frac{1}{4\pi\varepsilon_0\varepsilon}\frac{e^2}{\sqrt{\rho^2 + (z_{\rm e} - z_{\rm h})^2}}{\sqrt{\rho^2 + (z_{\rm e} - z_{\rm h})^2}}$$
for the wave function $\chi(\rho, z_{\rm e}, z_{\rm h}) = \sqrt{\rho}\Psi(\rho, z_{\rm e}, z_{\rm h})$ The well potential is included via the boundary condition $\chi(\rho, z_{\rm e,h} = \pm L/2) = 0.$

Resonance energies and linewidhts of Rydberg excitons in Cu₂0 quantum wells Niklas Scheuler, Patric Rommel, Jörg Main, Pavel Belov

Stabilization method

stabilization The method the uses real-valued spectrum Hamiltonian the of to calculate the comeigenenergies plex $E = E_{\rm res} - i\Gamma/2$. Calculating the spectrum for different values of the stabilization parameter $ho_{
m max}$ yields the stability diagram. Bound states independent of are the parameter, while resonant states stabilize in certain regions. The density of states can be extracted from the branches in the stability diagram using the relationship

Quantum Well

B-Spline method for energy calculations

In order to solve the time independent Schrödinger equation the wave function is expanded in terms of a finite B-spline basis

$$\chi(\rho, z_e, z_h) = \sum_{ijk} c_{ijk} B_i^k(\rho) B_j^k(z_e) B_k^k(z_h)$$

The B-splines are piecewise continuous polynomials, that are nonzero only in a certain interval. This expansion leads to generalized eigenvalue problem with sparse matrices.

while it is expected to behave as

$$\boldsymbol{\varrho}(\boldsymbol{E}) \simeq \boldsymbol{\pi}^{-1} \frac{\Gamma/2}{(\boldsymbol{E}_{\text{res}} - \boldsymbol{E})^2 + \Gamma^2/4}.$$

The complex energy is then determined by a fit to Lorentzian profile.

For $L \rightarrow 0$ the problem can be solved analytically. The spectrum contains Rydberg series below each threshold associated to the confinement states with the energies

$$\mathbf{E}_{i,j}(\mathbf{L}) \equiv \mathbf{E}_{ei}(\mathbf{L}) + \mathbf{E}_{hj}(\mathbf{L}) = \frac{\mathbf{\hbar}^2(i\mathbf{\pi})^2}{2\mathbf{m}_e\mathbf{L}^2} + \frac{\mathbf{\hbar}^2(j\mathbf{\pi})^2}{2\mathbf{m}_h\mathbf{L}^2}.$$

For finite well widths, there is a coupling between the states belonging to different thresholds. This results in the occurrence of resonant states.

V. A. Mandelshtam, H. S. Taylor, V. Ryaboy, and N. Moiseyev, Phys. Rev. A 50, 2764–2766 (1994)

Complex-coordinate-rotation method

The transformation $\rho \rightarrow \rho \exp(i\Theta)$ makes the Hamiltonian non-Hermitian. Bound and resonant state energies are invariant under this transformation, while the discretized continuum energies are rotated in the lower half of the complex plane by the angle 2Θ . This reveals the hidden resonances.

W. P. Reinhardt, Annual Review of Physical Chemistry 33, 223–255 (1982)
 Comparison of the results

N. Scheuler, P. Rommel, J. Main, and P. A. Belov, Phys. Rev. B **109**, 165440 (2024)

July 1, 2024—https://itp1.uni-stuttgart.de/

		Stabilization method		Complex rotation	
<i>i j n</i> segment		Re <i>E</i>	lm <i>E</i>	Re <i>E</i>	lm E
223	1a	45.6577	-0.0815	45.6607 -	-0.0798
	1b	45.6547	-0.0812		
224	2a	49.9181	-0.0242	49.9189	-0.0239
	2b	49.9164	-0.0229		
313	3a	51.5645	-0.0670	51.5665	-0.0691
	3b	51.5613	-0.0705		
225	4a	53.4736	-0.0060	53.4738	-0.0060
	4b	53.4738	-0.0062		
226	5a	54.6914	-0.0020	54.6915	-0.0020
	5b	54.6914	-0.0019		

