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INTRODUCTION
We derive a Redfield master equation for an arbitrarily
quick driven harmonic oscillator that generates a CPTP-
map due to the choice of the interaction Hamiltonian.
Afterwards, we solve the master equation for arbitrary
Gaussian initial states and calculate the mean energy and
a coherence measure for Gaussian states from the solu-
tions. Finally, we compare our results with an adiabatic
master equation derived in [1] and with the O’Connell
master equation. We find good agreement with the adia-
batic master equation in the slow driving regime.

THE MASTER EQUATION
Consider a driven harmonic oscillator with the Hamil-
tonian HS(t) = ~ω(n + 1/2) − λ(t)

(
a+ a†

)
coupled

to a bosonic bath with Hamiltonian HB =
∑
k ~ωkb

†
kbk

through the interaction Hamiltonian

HI = a† ⊗ b+ a⊗ b† (1)

with b =
∑
k gkbk. The bath is assumed to be initially

in a thermal state ρβ = Z−1
β exp(−βHB) with inverse

temperature β and with the partition function Zβ =
TrB(exp(−βHB)). In the Born-Markov approximation the
dynamics of the reduced density matrix in the interaction
picture is governed by

d

dt
ρ̃S(t) =

∫ t

0

ds
(
C12(s)

[
ã(t− s)ρ̃S(t), ã†(t)

]
+C21(s)

[
ã†(t− s)ρ̃S(t), ã(t)

])
+ H.c.

(2)

Hereby we have introduced the bath correlation func-
tions Cij(s) = 〈B̃i(s)Bj〉β/~2, where 〈. . . 〉β = TrB(. . . ρβ)
and with B1 = b and B2 = b†. Cij(s) can be expressed
by the ohmic spectral density J(ω) = ηω exp(−ω/Ω)
according to [3]. It can now be shown that ã(t) =

exp(−iωt)(A(t)1 + a) with A(t) = i
~
∫ t

0
dt′λ(t′) exp(iωt′).

After some algebra we finally arrive at the interaction
picture master equation

d

dt
ρ̃S(t) = − i

~
[w̃(t), ρ̃S(t)] +D [ρ̃S(t)] , (3)

with the dissipator D[·] = γ12Da[·] + γ21Da† [·] and
DO[·] = O·O†−

{
O†O, ·

}
/2 such as γij =

∫
R dsCij(s)e

iωijs

with ω12 = −ω21 = ω. Furthermore we have defined
w̃(t) = i~

(
f∗(t)a− f(t)a†)

)
with the driving function

f(t) =

∫ t

0

ds (C12(s)− C∗21(s)) eiωsA(t− s). (4)

The master equation (3) is a Redfield master equation
that preserves positivity by choice of the interaction
Hamiltonian.

ADIABATIC MASTER EQUATION
In [1] an adiabatic master equation was rigorously de-
rived for slow driving. The only difference to our master
equation is that all instances of US(t) and US(t − s) are
approximated by U ad

S (t) and eisHS(t)/~U ad
S (t) respectively

and with U ad
S (t) being the adiabatic time evolution oper-

ator (see [1] for details). For the harmonic oscillator, after
some straightforward calculations we obtain the master
equation

d

dt
ρ̃S(t) = − i

~
[w̃ad(t), ρ̃S(t)] +D [ρ̃S(t)] (5)

This is exactly our master equation (3) with the only dif-
ference that w̃(t) is replaced by w̃ad(t) = i~(f∗ad(t)a −
fad(t)a†) and

fad(t) = η

∫ t

0

ds
eiωs(

1
Ω + is

)2Aad(t, t− s). (6)

where Aad(t, t − s) = (λ(t)/~ω) exp(iω(t− s)). In the
scope of this work we use a linear driving protocol
λ(t) = ~ω∆lt/T , for which one can show that in the
limit T → ∞ at constant t/T of slow driving, the non-
adiabatic contribution of eq. (3) vanishes. Futhermore
we want to compare our master equation with the so-
called O’Connell master equation, that can be rigorously
derived from eq. (3) in the limit of weak-driving and in
the Schrödinger picture is given by

d

dt
ρOC(t) = − i

~
[HS(t), ρOC(t)] +D [ρOC(t)] . (7)

SOLUTION AND OBSERVABLES
Analogously to [4], eq. (3) can be solved by the ansatz

ρ̃S(t) = exp(φ(t)) exp
(
α(t)a†

)
exp(χ(t)n) exp(α∗(t)a),

(8)
Inserting this into eq. (3) leads to

ż(t) = −2σz(t) + γ12z
2(t) + γ21, (9a)

α̇(t) = (γ12z(t)− σ)α(t) + f(t)(z(t)− 1), (9b)

where σ = (γ12 + γ21)/2 and z(t) = exp(χ(t)). The func-
tion φ(t) can be obtained by normalization. From eq. (8)
we can calculate the observables 〈a〉(t) = 〈a†〉∗(t) and
〈n〉(t) by

〈a〉(t) = e−iωt

(
A(t) + α(t)

1

1− z(t)

)
, (10a)

〈n〉(t) = |A(t)|2 +
1

1− z(t)

(
z(t) + |α(t)|2 1

1− z(t)

)
+
A∗(t)α(t)

1− z(t) +
A(t)α∗(t)

1− z(t) . (10b)

MEAN ENERGY AND COHERENCE
The mean energy of the system can easily be calculated from the observables (10) and is given by E(t) =
~ω (〈n〉(t) + 1/2) − λ(t)

(
〈a〉(t) + 〈a†〉(t)

)
The figure shows the energy in units of ~ω as function of the dimension-

less time τ = t/T with y = 1/β~ω = 10, w = Ω/ω = 100, η = 0.01, ∆l = 1 and for the three dimensionless driving
times T = ωT = 50, 200, 1000. The initial state is fully determined by 〈a〉(0) = 0.5 + 0.5i, δn0 = 〈n〉(0)− nth = 5.
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As expected, the adiabatic approximation becomes better with increasing T and worse with increasing τ . For large
enough T and small τ , the O’Connell master equations approximates the other master equations quite well, while it
deviates notably from them for bigger τ . In the quick driving regime all three master equations lie far appart from each
other. Another interesting property of the solution of our master equation is the amount of coherences with respect to
the instantaneous eigenbasis of HS(t). In [2], we show that a measure for the latter is given by

CBt
(ρS(t)) = kB [〈nt〉(t) + 1] ln[〈nt〉(t) + 1]− kB〈nt〉(t) ln[〈nt〉(t)]− S(ρS(t)). (11)

with nt = n − λ̃(t)a† − λ̃(t)a + λ̃2(t)1 being the number operator in the instantaneous eigenbasis B(t) and S(ρ) =
−kB Tr(ρ ln ρ) being the von-Neumann entropy. The coherence measure can be interpreted as relative entropy of ρS(t)
and the incoherent Gaussian state δBt

(n̄t) with the same expectation value of the number operator nt corresponding to
Bt, i.e. n̄t = Tr(ntρS(t)). The figure displays the coherence measure for the same choice of parameters as for the energy.
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The intuitive expectation would suggest, that in the adiabatic limit the system would quickly approach the instata-
neous thermal state, causing the coherence to vanish. This is not the case here. We analyse this in detail in [2].

CONCLUSION
We derived and solved a Redfield master equation for
a driven harmonic oscillator that preserves positivity by
the choice of the interaction Hamiltonian. For a linear
protocoll we compared it with an adiabatic master de-
rived in [1] and found good agreement in the limit of
slow driving in the master equation itsself, in the mean
energy and in a coherence measure for Gaussian states.
With our work we paved the way to describe the full
thermodynamics of an arbitrary quick driven harmonic
oscillator weakly coupled to a thermal bath or e.g. a
quantum Carnot engine.
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