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Introduction

Phase space structure near saddle top in 1D, see e. g. [3]:

I Stable (Ws) and unstable (Wu) manifolds define four
regions (forward/backward/no reaction)

I Intersection forms the Normally Hyperbolic Invariant
Manifold (NHIM)

I Dividing Surface (DS) is attached to the NHIM
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Model System

I Two Gaussian barriers (M-Problem)

V (x, t) =

2∑
i=1

Bi exp
{
−ai[x− xb,i(t)]2

}
with time dependent positions

xb,i(t) = x0,i + x̂i sin(ωx,it + ϕx,i)

I Simulation units: Bi = 1.75, ai = 1, x0,1 = −1,
x0,2 = 1, x̂i = 0.25, ωx,i = π, ϕx,1 = 0 and ϕx,2 = π
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Phase Space Structure: Lagrangian Descriptor (1)

I Lagrangian Descriptor (LD) measures distance
covered in [t0 − τ, t0 + τ ] (see e. g. [2]):

L(x0, v0, t0) =
∫ t0+τ

t0−τ
dt |v(t)|

I Static potential (ωx,i = 0 ∀i):
I Stable and unstable manifolds clearly visible
I Two local NHIMs at intersections

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−1.0

−0.5

0.0

0.5

1.0

v x

10

20

30

40

50

60

70

80

LD for Static Potential

Phase Space Structure: Lagrangian Descriptor (2)

I Dynamic potential (ωx,i = π ∀i):
I Complex, fractal-like behavior similar to [4]
I Stable and unstable manifolds not uniquely identifiable
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Local Normally Hyperbolic Invariant Manifolds

I Use reactive regions to identify manifolds locally for
each saddle (r: reactant, x < xNHIM; p: product,
x > xNHIM)

I Iterative algorithm finds NHIM for every t0, see [1]
=⇒ Transition State Trajectory (cyan)
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Reactive Regions at t0 = 0 with Local TS Trajectories

Rate Calculations (1)

Example Trajectory
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Example Trajectory: Kinetic Energy and Position

Rate Calculations (2)

Canonical Ensemble (kBT = 2)

I Three states: Reactant, intermediate and product

I Existence of global NHIM uncertain
=⇒ No definite point in time for a reaction
=⇒ Multiple definitions possible:
I Crossing of first (left) NHIM (blue): Non-monotonic rate

because of reflections at second barrier
I Crossing of second (right) NHIM (orange)
I NHIM crossing with lowest kinetic energy (green)
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Reactant Populations

I At most 2 crossings with local NHIMs

I Few particles trapped within the observed time span

I Local recrossings because of reflections possible (left
NHIM, label “2, no reac.”)
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Summary and Outlook

I Lagrangian descriptor reveals complex fractal-like
phase space structure

I Multiple definitions for reaction rates reasonable
I Possible future work:

I 2-dimensional systems
I Resonance effects
I More than 2 saddles
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