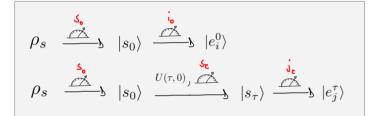
Thermodynamics of initial coherences

Franklin Rodrigues, Eric Lutz

Fluctuation theorems via Bayesian inference

Generalization of TPM approach:



 $P(s_0, i_0, j_{\tau}) = p_s^0 p(i_0|s_0) p(s_{\tau}|s_0) p(j_{\tau}|s_{\tau}).$

Easy generalization to open system by tracking bath via standard TPM scheme:

$$P(s_0, i_0, \mu, j_\tau, \nu) = p_s^0 p_\mu p(i_0 | s_0) p(s_\tau, \nu | s_0, \mu) p(j_\tau | s_\tau).$$

With the proper definition of backward process we arrive at the integral fluctuation theorem

 $\langle \exp(\beta(w - \Delta F) - \Delta C - D) \rangle = 1.$

Second law for coherences

Via Jensen's innequality we have that

 $\langle w \rangle \ge \Delta F + \beta^{-1} (\Delta C + D)$ $\ge \Delta F + \beta^{-1} \Delta C.$

Coherences are useful when $\Delta C \leq 0$.

 $\mathcal{D} = S(\rho_{\tau}^{d} || \rho_{\beta}) \ge 0$ is the classical nonequilibrium divergence.

In order to be advantageous, ΔC must be negative: innitial coherences are strictly necessary.

Tight for unitary processes; For open systems, entropy production reads:

 $\Sigma = \mathcal{I}_{S:E} + \mathcal{D}_E$

University of Stuttgart

Timescales and work extraction

Decrease of ΔC can go either for $\langle w \rangle$ or for $\mathcal{I}_{S:E}$:

Transfer to $\langle w \rangle$ happens at the Rabi frequency timescale τ_w of each relevant energy gap.

Transfer to $\mathcal{I}_{S:E}$ happens at the timescale of decoherence τ_{dc} , via generalized cross-correlations between interaction operators.

